
Erik Slagter

Restaurant Application Capstone
Presentation

Project Links

GitHub Repository
https://github.com/erik06/MIT-capstone

Vercel Front End (Next JS)
https://mit-capstone.vercel.app

Strapi Backend (Render Cloud)
https://strapi-75qo.onrender.com/admin

GraphQL Playground (Render Cloud)
https://strapi-75qo.onrender.com/graphql

https://github.com/erik06/MIT-capstone
https://mit-capstone.vercel.app/
https://strapi-75qo.onrender.com/admin
https://strapi-75qo.onrender.com/graphql

Part 1: Front-End Architecture, Authentication, And App Diagram

Application Overview Diagram

Git & GitHub

Front-End Architecture – Next JS

Small pieces of code that are shared
and amongst pages and other areas of
the app. Some components are simple,
like “Logo.js” which just contains the
SVG logo for “Chicago Chow” verses a
more involved component like
”CheckoutForm.js” which contains all the
logic and validation for the cart and
checkout system. This app utilizes React Context to store

all the information the user generates
during their time on the application. This
logic sets cookies for storing information
such as cart contents and the users
JSON Web Token.

Restaurant detail pages are dynamically
rendered via Next JS with a Graph QL
call to the Strapi database via restaurant
ID.

These files make up the core of the app,
the high-level layout and the homepage
of the app. Here too is the login and
register pages which allow user login-
logout.

Finally, the utils folder contains a few helpful
utilities used throughout the application. For
example, “centsToDollars.js” is responsible for
calculating cents to dollars and making the
prices easier to read.

Authentication

Registration
The code shown is for user registration with a Strapi backend within a Next.js

application. Utilizing the Apollo Client, it sends GraphQL mutation requests for user

registration. When a user fills out the form with their email and password and clicks

"Sign Up", the `handleRegister` function is invoked. This function sends the user's

email and password as variables in the `REGISTER_MUTATION` GraphQL

mutation to the Strapi backend. If the registration is successful, Strapi returns a

JSON Web Token (JWT) and user details. This JWT is then stored as a "token" in

a browser cookie to maintain the user's authenticated state, while the user details

are saved in the application's context using the `setUser` method from

`useAppContext`. After successful registration, the user is redirected to the

homepage and presented with a success alert. If the mutation request is still being

processed, a loader is shown, and if there's an error, it can be displayed using the

`error` prop in the `Form` component.

Authentication

Login
This code showcases the user authentication (login) with a Strapi backend in a Next.js

application. It leverages the Apollo Client to send a GraphQL mutation request for logging

in. Users input their email and password in the form and upon clicking "Login", the

handleLogin function is called. This function forwards the user's email as the identifier

and the password as variables to the LOGIN_MUTATION GraphQL mutation directed at

the Strapi backend. Once authenticated successfully, Strapi replies with a JSON Web

Token (JWT) and user data. The JWT is stored as a "token" cookie to maintain the user

session, and the user information is updated in the app's context with setUser from

useAppContext. After a successful login, users are rerouted to the application's main

page and are greeted with a success notification. While the mutation is in progress, a

loader is displayed, and any errors encountered during the process can be reflected

through the error prop in the Form component.

Stripe

In this implementation, Stripe is integrated into the shopping cart
functionality to handle payment processing. The `Checkout.js` file
initializes Stripe using the `loadStripe` function from `@stripe/stripe-
js` and provides the Stripe context via the `Elements` component from
`@stripe/react-stripe-js` to any child components, particularly the
`CheckoutForm` component where payment details are collected.

Within the `CheckoutForm.js` file, Stripe's `useStripe` and
`useElements` hooks are employed to extract necessary utilities for
creating payment tokens and interfacing with the card elements. Users
can fill in their shipping information (address, city, state) and provide
card details through Stripe's `CardElement`, which encapsulates a UI
for credit/debit card input while ensuring PCI compliance. On form
submission, the `submitOrder` function retrieves the entered card
information, uses Stripe's utilities to create a token representing that
card, and sends this token along with other order details (like address
and cart items) to the server using a GraphQL mutation. On the server
side (not shown), Stripe would use this token to charge the user. The
application also has error handling in place to notify users about any
issues during this process, such as missing address fields or card errors.
Once the transaction is successful, the user is alerted, the cart is reset,
and they are redirected to the homepage.

Part 2: Database And API

Database

What data in the application is persistent and stored in your
database?
In my application, the persistent data stored in the database encompasses
several key entities: users, orders, restaurants, and dishes. Additionally, the
database houses images for both restaurants and their respective dishes.

Discuss any new database features you’ve developed as well as the
design decisions you made when implementing those features.
What did you refactor from the starter code?
While I haven't introduced any new database-specific features, there's
potential for future enhancements, especially the integration of restaurant
reviews from authenticated users. This addition could elevate the user
experience by providing a more comprehensive understanding of each dining
option. I heavily refactored the shopping cart, moving it to a new place that
doesn’t overlap any content. I also made the toggle cart button very clear.

What challenges did you encounter? How did you overcome those challenges?
On the technical side, I faced challenges during deployment, particularly with integrating both Strapi
and the associated database within a cloud environment. Ensuring the flawless display and access to
the stored images was another complexity. The migration of data from my local Strapi setup to the
cloud was perhaps one of the most intricate tasks. My solution involved leveraging terminal
commands to export Strapi data from the local setup. Following this, I employed the "scp" command,
enabling me to seamlessly transfer the files to the remote cloud instance.

API

GraphQL
I used GraphQL for my project, here is a

sample query from the GraphQL playground,

along with the Docs section shown, which

displays all of the possible queries and

mutations available in this API.

I highlight the main endpoints on the next slide.

API - Endpoints

1. dish
 - Role: This endpoint would be used to fetch or modify details about a single dish item.
 - Possible Operations:
 - `query`: Retrieve the details of a specific dish based on a dish ID or other criteria.
 - `mutation`: Create a new dish, update an existing dish's details, or delete a dish.

2. dishes
 - Role: Fetch a list of dishes, possibly with filtering, sorting, or paging capabilities.
 - Possible Operations:
 - `query`: Retrieve a list of all dishes or those that match certain criteria.

3. order
 - Role: Handle operations for a single order. This could involve fetching order details, updating order status, or making modifications to the items in the order.
 - Possible Operations:
 - `query`: Retrieve the details of a specific order based on an order ID.
 - `mutation`: Place a new order, update an existing order's details or status, or delete an order.

4. orders
 - Role: Retrieve a collection of orders. Like `dishes`, this might also support filtering, sorting, and paging.
 - Possible Operations:
 - `query`: Retrieve a list of all orders or those matching certain criteria.

5. restaurant
 - Role: Manage the information and operations for a single restaurant.
 - Possible Operations:
 - `query`: Fetch the details of a specific restaurant based on its ID or other criteria.
 - `mutation`: Add a new restaurant, update details of an existing restaurant, or delete a restaurant.

6. restaurants
 - Role: Retrieve information about multiple restaurants. Again, this could support capabilities like filtering, sorting, or paging.
 - Possible Operations:
 - `query`: Get a list of all restaurants or those that match specific criteria.

Part 3: Deployment, Additional Features, App Demonstration, Reflection

Deployment

Front End – Next JS on Vercel
I deployed my Next.js app on Vercel through a

streamlined and efficient process. First, I ensured that

my Next.js application was ready in a Git repository,

since Vercel integrates seamlessly with version control

platforms like GitHub, GitLab, and Bitbucket. Once my

app was in a repository, I signed up and logged in to

Vercel, then connected my Git account. After

connecting, Vercel displayed a list of my repositories. I

selected the repository containing my Next.js app.

Vercel automatically detected that it was a Next.js

project and provided me with default build settings. I

confirmed these settings, and Vercel deployed my app,

giving me a live URL. Every time I pushed to the

connected branch afterward, it triggered automatic

deployments, ensuring my live site was always up-to-

date with my latest code changes.

Deployment

Back End – Strapi & PostgreSQL on Render
I deployed my Strapi API on the Render cloud platform; I

began by preparing my Strapi project for deployment. This

involved ensuring that the database configurations were set

up correctly, using environment-specific variables, and then

pushing my Strapi codebase to my Git repository. With my

Strapi project in a Git repository, I proceeded to Render's

dashboard and created a new web service. After linking the

repository, I set up the necessary environment variables for

my database and other configurations (and pointed Render

to my “backend” folder). Render automatically detected the

build and start commands from my `package.json`. Once

everything was set up, I triggered the build and deployment

process. Within minutes, my Strapi API was live on Render,

accessible via a Render-generated URL. I also made sure to

set up a PostgreSQL database on Render for persistence,

ensuring that my data remained secure and available.

Deployment

How did you deploy your app?
I deployed my app on both Vercel and Render Cloud, leveraging the benefits of cloud hosting. The site is rebuilt on
each git commit.

Where is it hosted?
It's hosted on both Vercel and Render Cloud. Utilizing Render for Strapi (Node JS) and a managed PostgreSQL
service.

Did you use Docker?
While Docker is a common choice for many, I opted not to use it for this particular deployment because my
application is hosted on many different providers.

What changes did you make to the project in order to deploy it?
One of the primary changes I made was ensuring that the URLs were correctly configured to allow seamless
communication between the front-end Next.js application and the backend services.

What challenges did you experience?
One of the main challenges I encountered was ensuring the URLs allowed the front-end Next.js application to
communicate effectively with the Strapi and PostgreSQL backend services.

How did you overcome those challenges?
To resolve this issue, I thoroughly reviewed the documentation and made the necessary adjustments to ensure
uniformity in the URLs.

Additional Features

In the time allocated, I wasn't able to implement any extra

features. However, I identified that a valuable enhancement

would be a dedicated section for the registered users to share

their reviews on restaurants and specific dishes within our

application.

I anticipated potential issues in this endeavor, especially when it

comes to establishing the right API routes for this influx of data.

Moreover, ensuring that my API calls accurately targeted the

corresponding dish and restaurant via GraphQL would present its

own set of complexities. This foresight would help me prepare for

potential challenges down the road.

Application Demonstration – Create Account, Log In, Cart Functions

https://mit-capstone.vercel.app

https://mit-capstone.vercel.app/

Reflection

If I were to embark on this project today, while the core coding and structure might remain largely

unchanged, my approach to deployment would be significantly different. One of the primary lessons I’ve

learned from this experience was the importance of deploying earlier in the development process. I

waited until the application was nearly complete before initiating deployment, only to discover that this

phase presented the most significant challenges. Deploying earlier would have allowed me to identify

and rectify any deployment-related issues incrementally, making the process smoother and more

efficient.

Regarding additional functionalities, I've previously touched upon the inclusion of reviews and ratings for

dishes and restaurants, emphasizing their potential value to users. Beyond that, I've been pondering the

incorporation of a personalized profile page. This feature would provide a consolidated view for logged-

in users, showcasing all their past orders. Such a feature would not only enhance the user experience

by offering a quick glance at their order history but also foster a more tailored and engaging platform for

the clientele.

